Контрольная работа №1

К-1 Вариант 3

- 1° . Точка M принадлежит отрезку BK, BM =15 см, BK = 26 см. Найдите длину отрезка MK.
- 2° . Луч р проходит между лучами а и b, \angle (ab) = 90° , \angle (ap) = 32° . Найдите \angle (pb).
- 3. Три точки A, B, C лежат на одной прямой, AB = 7 см, BC = 11 см.
- а) Каким может быть расстояние АС? Для каждого из возможных случаев сделайте чертёж.
- б) Лежат ли точки A, B и C на одной прямой, если AC = 4 см, AB = 2 см, BC = 3 см?

Контрольная работа №2

K-2

На рисунке 36 изображены две прямые AC и MO, пересекающиеся в точке K.

1°. а) Выпишите образовавшиеся при пересечении этих прямых смежные углы. Каким свойством они обладают? б) Есть ли среди получившихся углов равные? Если есть, то объясните почему.

 $2. ∠ MKC - ∠ CKO = 70^{\circ}.$ Найдите углы AKO, AKM и CKO.

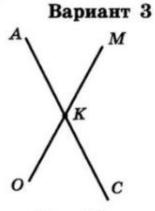


Рис. 36

3. Сумма градусных мер углов *АКМ* и *ОКС* меньше 180°. Какими (острыми, прямыми или тупыми) могут быть эти углы?

K-3

- Вариант 3
- 1°. Треугольники MKA и DOB равны. Известно, что KA = 74 см, MA = 12 см, $\angle K = 76$ °. Найдите соответствующие стороны и угол треугольника DOB.
- 2° . Отрезки MK и PB равны и образуют равные углы с отрезком KB. Докажите, что BM = KP (рис. 40).
- 3. На основании AC равнобедренного треугольника ABC взяты точки K и M, такие, что $\angle BKA = \angle BMC$. Докажите, что BK = BM.

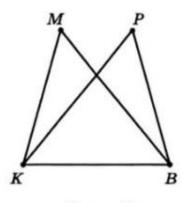


Рис. 40

Контрольная работа №4

K-4

- 1°. Параллельные прямые b и c пересечены прямой a, $\angle 1 = 54$ °. Найдите $\angle 2$ (рис. 44).
- 2° . В равнобедренном треугольнике ABC (AB основание) угол при вершине C равен 60° . Найдите углы при основании AC этого треугольника.
- 3. В треугольнике *ABC* углы 1, 2, 3—внутренние, а углы 4, 5, 6—внешние.
- а) Могут ли ∠2 и ∠3 быть прямыми?
- 6) $\angle 6 = 3 \cdot \angle 1$, $\angle 3 = 2 \cdot \angle 1$. Найдите $\angle 1$, $\angle 2$, $\angle 3$.

Вариант 3

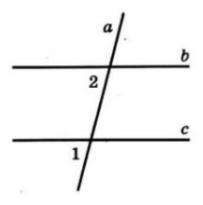


Рис. 44